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Effects of biochar on soil microbial diversity 
and community structure in clay soil
Jing Zhang1,2,3,4* and Jiang‑Long Shen1,2,3,4 

Abstract 

Purpose: We determined the microbial community diversity and structure in soil samples under different amounts 
of biochar added. Meanwhile, we also researched the relationships between soil microbial and soil physicochemical 
properties.

Method: In this study, a field experiment was set up, with a total of three experimental treatments: no biochar appli‑
cation, 10 t/m3 biochar application, and 20 t/m3 application. High‑throughput sequencing technologies were used for 
soil samples of different treatment groups to understand soil microbial diversity and community structure.

Results: We found that the soil physicochemical properties after biochar addition were better than those without 
biochar addition, and the alpha diversity was higher in biochar addition level of 20 t/m3 than other processing groups. 
Proteobacteria, Cyanobacteria, and Actinobacteria were the dominant phyla of this study. The dominant genera were 
Skermanella, Nostoc, Frankia, and Unclassified-p-protecbacteria. At the gate level, Actinobacteria had significant dif‑
ferences among the three groups with different addition amounts. The microbial community structure was mainly 
influenced by soil porosity, soil moisture content, nitrogen fertilizer, and potassium fertilizer other than soil phosphate 
fertilizer and organic matter.

Conclusions: The results suggested that changes under different amounts of biochar added generate changes in 
soil physicochemical properties and control the soil composition of microbial communities. This provides a new basis 
for soil improvement.
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Introduction
Soil is an important carbon “source” and “sink” in ter-
restrial ecosystems. Soil carbon pools are mainly divided 
into soil organic carbon pools and inorganic carbon pools 
(Atkinson et al. 2010). The main way to mitigate climate 
change in the short term is to increase the soil organic 
carbon pool and maintain the stability of the soil organic 
carbon pool (Liang et al. 2010. Agricultural land accounts 
for 35 to 37% of the global land area and is the land most 

affected by human activities. The decline of organic car-
bon in farmland soil is the most serious degradation fac-
tor (Bronick and Lal 2005). Therefore, the change of soil 
organic carbon in agricultural land has been widely con-
cerned by scholars.

Biochar has high stability and cannot be decomposed 
well by soil microorganisms. The impact of biochar on 
soil microorganisms is mainly through changes to the soil 
environment (Wu et al. 2017).

Biochar has a wide range of carbonization raw materi-
als and low price. As a renewable recycling resource, it 
plays an important role to affect the change of soil organic 
carbon (Chen et al. 2013). Biochar has highly developed 
pore structure, huge specific surface area, and strong ion 
adsorption and exchange capacity. This characteristic can 
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change the indexes of soil surface area, porosity, aggre-
gate, and density (Steiner et al. 2010); provide niches for 
colonization of soil microorganisms (Zackrisson and 
Wardle 1996; Warnock et  al. 2007; Richard et  al. 2013); 
and affect soil aeration, water content, root movement, 
microbial habitat (Wildman and Derbyshire 1991), and C 
and N cycling in the terrestrial ecosystem (Nguyen et al. 
2017; Zhang et al. 2017a; Zhang et al. 2018b).

Soil microorganism is an important participant in 
biochemical process. It promotes the microcirculation 
of vegetation soil ecosystem and has a significant effect 
on improving soil fertility. The diversity and community 
structure of soil microorganism can significantly affect 
soil quality and are important factor to evaluate soil qual-
ity. The diversity and community structure of soil micro-
organism play an important role in influencing the soil 
fertility, soil health, ecosystem’s function, and productiv-
ity (Zou et al. 2017).

Clayey raw soil has the characteristics of poor per-
meability, small gap, poor ventilation and drain-
age performance, and slow fertilizer release and 
nutrient transformation (Li et al. 2012; Pang et al. 2021) 
and cannot meet the nutrients and water required for 
crop growth. Under natural conditions, the natural mat-
uration process of raw soil is slow, which seriously hin-
ders the rapid development of agriculture. Therefore, it 
is a certain trend of current agricultural development to 
realize the rapid improvement of the quality of new culti-
vated land and degraded land through biochar.

At present, biochar has been widely studied to improve 
soil health (Keya 2016; Yuan et  al. 2018). It is mainly 
reflected in the effects of adding biochar on soil physi-
cal property (Wang et  al. 2016b; Stéphanie et  al. 2005), 
chemical property (Wang et al. 2021a; Zhang et al. 2018a, 
b), and soil microbial diversity (Gundale and Deluca 
2007; Ahmad et  al. 2014; Cheng et  al. 2019; Ding et  al. 
2019). Grossman et  al. (2010) study found that biochar 
in carbon-rich soils in the Amazon Basin can increase 
the number and diversity of soil bacterial communities. 
Khodadad et al. (2011) found that the relative abundance 
of actinomycetes and chlortetracyclines in soils supple-
mented with biochar increased significantly, indicating 
that inert biochar can affect bacterial community com-
position. Rondon et al. (2007) found that the application 
of biochar can significantly increase the biomass of fungi 
and gram-negative bacteria and can promote the biologi-
cal nitrogen fixation ability of rhizobia and improve the 
activity of soil nitrifying microbial flora. Numerous stud-
ies have shown that biochar addition has an effect on soil 
microorganisms. However, most studies focus on the 
effect of biochar addition on multi-year degraded soil and 
different soil types (Wang et al. 2013; Wang et al. 2016a, 
b; Zhang et al. 2019). There are few studies on the effects 

of biochar application on soil microorganisms in clayey 
raw soil, and the optimal amount of biochar addition has 
not been determined. Clay soil has poor permeability, 
small voids, and low degree of maturity, which seriously 
affects soil quality and crop yield. Therefore, this paper 
adds biochar to clayey raw soil and studies the sample 
plots with different gradient biochar addition, in order to 
achieve the following goals: (1) which biochar addition 
has the best effect on the improvement of clayey raw soil; 
(2) what is the mechanism or principle of the effect of dif-
ferent addition amounts on different microorganisms; 
and (3) which soil physicochemical properties have a sig-
nificant impact on soil microorganisms.

Materials and methods
Experimental field
The experiment was carried out in Qinling field monitor-
ing center station, which is located in Shangwang village, 
Tangyu Town, Mei County, Baoji City, Shaanxi Province, 
China (33° 59′–34° 19′ N and 107° 39′–108° 00′ E). This 
area was characterized by a warm temperate semi-humid 
continental climate, and its altitude was ranged from 442 
to 3767 m. The mean annual precipitation was 609.5 mm, 
and the annual mean temperature was 12.9°C. The soil 
texture was clayey soil.

Experimental design and treatments
The raw material of biochar comes from fruit tree resi-
dues (were manufactured by Shaanxi Yixin Bio-energy 
Technology Development Co., Ltd.). These biochar were 
dried in a continuous pyrolysis plant to <5% moisture 
content before carbonization. The production process 
was slow pyrolysis, at a highest treatment temperature of 
550 °C and a heating rate of 5–10 °C  min−1 (Zwieten et al. 
2010). The feedstock was kept in the reactor for 30 min 
on average, then directly sieved (2 mm mesh). The prop-
erties of biochar were as follows: pH was 9.42, EC was 
0.15 dS  m−1, the content of total C was 794 g  kg−1, the 
content of total N was 9.82 g  kg−1, the content of total H 
was 16.7 g  kg−1, and the organic carbon was 763 g  kg−1.

In September 2020, this experiment started to imple-
ment. This experiment adopted the method of field 
experiment. In this experiment, 9 test plots were set up, 
and the size of them was 1.5 m × 3 m. The biochar appli-
cation amount was 0, 10, and 20 t/hm2, and 3 treatments 
were set. The plot adopted the random block design, 
and each treatment was set for three repetitions. The 
biochar was sprinkled evenly on the soil surface, and it 
was mixed with the plough layer soil (20 cm) by manual 
stirring, so that the color of the soil was uniform eve-
rywhere, and ridges were left to stand. The same N, P, 
and K fertilization schemes were adopted in the experi-
mental plots, which were basically consistent with the 
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fertilization habits of local farmers, which were N: 150 
kg/hm2 respectively;  P2O5: 120 kg/hm2; and  K2O: 90 kg/
hm2. The crops planted in the experimental plot are the 
same as the local crops. Wheat is planted in winter and 
spring, and corn is planted in summer and autumn.

Sample collection and analysis
In June 2021, soil samples were collected. The plant resi-
dues and stones were moved away from the plots. Then, 
samples were collected from three different regions of 
the plot by using a core sampler (20 mm internal diam-
eter). The sampling depth was 20 cm. The soil samples 
were directly sieved (2 mm mesh), and subsamples were 
mixed to avoid heterogeneity and yield a soil sample for 
each plot. All soil samples were divided into two parts: 
one part was naturally air dried for the determination of 
soil physical and chemical properties, and the other part 
was frozen in refrigerator of −20 °C for the extraction of 
soil macrogenomic DNA.

Chemical analysis
The soil moisture content (SMC) was measured by 
the drying and weighing method (105°C for 24 h). Soil 
porosity (SP) was determined by the ring knife method. 
Ammonium nitrogen (AN) and nitrate nitrogen (NN) 
were extracted with 0.01mol/l calcium chloride and then 
determined by AA3 flow injection analyzer. Available 
phosphorus (AP) was extracted with 0.5mol/l sodium 
bicarbonate (pH 8.5) and then determined by Smartchem 
200 continuous flow injection analyzer. Available K (AK) 
was extracted with 1mol/l ammonium acetate (pH 7) and 
determined by flame photometer. Organic matter content 
(OMC) was determined by heating oxidation of potas-
sium dichromate sulfuric acid and titration of ferrous sul-
fate. The required index measurement methods referred 
to Soil Agrochemical Analysis (Third Edition) written by 
Shidan Bao (2000). Each analysis was performed in three 
replicates, and the data were presented as the averages.

DNA extraction and high‑throughput Miseq sequencing
The total genomic DNA in each soil sample was extracted 
using the MoBio Powersoil® DNA Isolation Kit (MoBio 
Laboratories, USA). This method performed equally 
well over a range of different soils (Wüst et al. 2016). The 
quality and concentration of DNA were verified by 1% 
agarose gel electrophoresis and a NanoDrop™ 1000 spec-
trophotometer (Thermo Scientific, USA).

The V3-V4 region of the bacterial 16S rRNA gene 
was amplified using the PCR primers 338F (5′-ACT 
CCT ACG GGA GGC AGC AG-3′) and 806R (5′-GGA 
CTA CHVGGG TWT CTAAT-3′) and a sample tagging 
approach; the size of amplicon was 468bp (Caporaso et al. 
2012). The formal PCR test used TransGen AP221-02: 

TransStart Fastpfu DNA Polymerase, 20 μl reaction sys-
tem: 5×FastPfu buffer 4 μl, 2.5 mM dNTPs 2 μl, forward 
primer (5 μM) 0.8 μl, reverse primer (5 μM) 0.8 μl, Fast-
Pfu polymerase 0.4 μl, BSA 0.2 μl, template DNA 10 ng, 
and supplement  ddH2O to 20 μl. The following thermal 
cycling scheme was used: 30 cycles of initial denaturation 
at 95 °C for 3 min, denaturation at 95 °C for 30 s, anneal-
ing at 55 °C for 30 s, and extension at 72 °C for 45 s, fol-
lowed by a final extension at 72 °C for 10 min. Amplicons 
were extracted from 2% agarose gels, purified using an 
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, 
Union City, CA, USA) according to the manufacturer’s 
instructions and quantified using a QuantiFluor™ (Pro-
mega, USA). Purified amplicons were pooled in equimo-
lar amounts and paired-end sequenced on an Illumina 
MiSeq platform (Majorbio, Shanghai) according to stand-
ard protocols.

Sequencing data processing
The data of each sample was distinguished according to 
the index sequence, and the extracted data was saved 
in a fastq format. According to the overlap relationship 
between paired-end reads, the paired reads were merged 
into a sequence by using Fastp and Flash software. 
At the same time, the quality of reads and the effect of 
merge were quality controlled and filtered. The samples 
were distinguished according to the barcode and primer 
sequence at the beginning and end of the sequence, the 
effective sequence was obtained, and the sequence direc-
tion was corrected. Using Uparse Software (version 
7.0.1090) n.d., the biological information of OTU at 97% 
similar level was statistically analyzed. According to the 
Silva Database (lease138) (n.d.), 97% OTU representative 
sequences with similar level were classified by RDP clas-
sifier Bayesian algorithm. The OTU or other taxonomic 
levels with 97% similarity were selected, and Mother 
(version v.1.30.2) (n.d.) was used to calculate the alpha 
diversity index (Chao, Ace, Shannon, Smith-Wilson) 
under different random sampling.

Statistical analysis
Differences in the soil physicochemical properties at 
these plots were compared using one-way ANOVA with 
Tukey’s test. The Student test was used to analyze the 
differences between alpha diversity indexes. The spe-
cies composition of different samples at the phylum level 
and genus level was analyzed by R. The evolutionary tree 
was constructed according to the maximum likelihood 
method, and then the distance matrix between samples 
was obtained by FastUniFrac n.d.. Finally, the sample dis-
tance Heatmap diagram was made in R (version 3.3.1) 
that was a programming language for statistical calcula-
tion and plotting. The beta diversity distance matrix was 
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calculated with Qiime, and the NMDS analysis was car-
ried out with vegan packages of R. ANOSIM and PER-
MANOVA were calculated with vegan package of R 
language. The Kruskal-Wallis H test was used to test the 
significant difference between groups at the phylum level, 
and the stats package of R was used to plot. The Lefse 
Software n.d. was used to carry out linear discriminant 
analysis (LDA) on samples according to different groups 
to find out the species that have significant differences 
in sample division. The relationships between soil physi-
cal and chemical properties and soil microbial diver-
sity and community structure were determined using 
the RDA function in redundancy analysis (RDA) in the 
vegan package in R. The correlation heatmap analysis was 

carried out with a pheatmap package of R language to 
calculate the correlation coefficient between soil physical 
and chemical properties and selected species.

Results
Soil physical and chemical properties
With the increase of biochar added, there was no sig-
nificant difference between ammonium nitrogen and 
available phosphorus. There was also no significant dif-
ference in soil water content between this field with the 
addition amount of 10 t/hm2 (BS) and the control group, 
but there was a significant difference in soil water con-
tent between this field with the addition amount of 20 t/
hm2 (MCS) and the control group. Porosity and nitrate 

Table 1 Soil physical and chemical properties between different amounts of biochar added

Different lowercase letters in the same column indicate a significant difference at the 0.05 level. MC, BS, and MCS represent the biochar addition amount of 0 t/m3, 10 
t/m3, and 20 t/m3 respectively

SMC soil moisture content, SP soil porosity, AN ammonium nitrogen, NN nitrate nitrogen, AP available phosphorus, AK available K, OMC organic matter content

Treatments SMC SP AN NN AP AK OMC
(%) (%) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (g/kg)

MC 18 ± 1.3a 47 ± 00.3a 8.13 ± 1.012 21.46 ± 1.318a 21.50 ± 5.200 131.67 ± 3.786a 5.62 ± 1.650a

BS 18 ± 0.3a 51 ± 00.1b 11.74 ± 4.839 36.62 ± 1.519b 25.87 ± 3.092 291.00 ± 84.894b 34.73 ± 7.870b

MCS 20 ± 0.5b 52 ± 00.7c 10.15 ± 2.121 42.04 ± 2.090c 24.00 ± 2.835 420.67 ± 66.606b 45.33 ± 10.957b
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Fig. 1 Rarefaction curves between different amounts of biochar added. Notes: MC, BS, and MCS represent the biochar addition amount of 0 t/m3, 
10 t/m3, and 20 t/m3 respectively
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nitrogen were significantly different among the three 
treatments and showed a gradual increasing trend. Com-
pared with the control group, there were significant dif-
ferences between BS and MCS in available potassium 
and organic matter, and the content increased with the 
increase of dosage (Table 1).

The composition of the microbial community among dif-
ferent treatments was assessed by MiSeq sequencing, which 
produced 49,122 to 56,739 sequences with different num-
bers of phylogenetic operational taxonomic units (OTUs). 
All rarefaction curves approached the saturation plateau, 

indicating that the data volume of sequenced reads was rea-
sonable and that increasing the number of reads made only 
a small contribution to the total number of OTUs. However, 
there were significant differences in the rarefaction curves 
obtained from the samples, that the higher the amount of 
biochar addition, the higher richness (Fig. 1).

Effect of biochar addition on soil microbial community 
composition and overall diversity
The listed alpha diversity indices of soil bacterial were 
calculated based on the relative abundance of OTUs at 
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Fig. 2 Histogram of a Chao, b Ace, c Shannon, and d Smith‑Wilson between different amounts of biochar added. Notes: MC, BS, and MCS are the 
same as in Fig. 1. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001
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97% sequence similarity level and are shown in Fig.  2. 
Chao index and Ace index were used to describe com-
munity richness, Shannon index was used to describe 
community diversity, and Smith-Wilson index was used 
to describe community evenness. BS and MCS had sig-
nificantly higher Chao and Ace compared with MC, and 
Smith-Wilson in BS and MCS also was significantly dif-
ferent but lower compared with MC, suggesting the bio-
char has been reported to be related to the richness and 
evenness. Shannon was not significantly different among 
these treatments, but Shannon in BS and MCS was 
higher than MC.

The relative abundances of major taxonomic groups 
have been showed in Fig.  3. OTUs were assigned 
into 6 bacterial phyla, 25 families, and 31 genera. 
The taxonomic classification of bacterial commu-
nity composition showed that the dominant phyla, 
which accounted for more than 98% of the abundance 
of all species, were Proteobacteria, Cyanobacteria, 
and Actinobacteria. All soils were dominated by the 
phylum Proteobacteria, accounting for 87.8–88.9% 
of all sequences among treatments. Cyanobacteria 

(1.1–12.1%) was the second most abundant phyla. It 
was worth noting that the content of Actinobacteria in 
MCS was significantly higher than that in BS and MC, 
and the content of unclassified_k_norank_d_Bacteria 
was higher in BS and MCS, which was almost absent 
in MC.

The dominant genera were Skermanella, Nostoc, 
unclassified_p_Proteobacteria, unclassified_c_Alphapro-
teobacteria, and Frankia. Skermanella was the dominant 
genus accounting for 76.4–87.1%, and its content in MC 
was higher than BS and MCS. Nostoc (0.55–9.5%) was 
the second most abundant genera, which was almost 
absent in MCS. Unclassified_p_Proteobacteria and 
unclassified_c_Alphaproteobacteria appeared in BS and 
MCS. Frankia was unique in MCS.

Non-metric multidimensional scaling (NMDS) ordi-
nations based on the Bray-Curtis similarity matrices 
was representative (stress = 0.038 < 0.05) and indicated 
that experimental grouping was meaningful (ANOSIM, 
P = 0.013 < 0.05; PERMANOVA, P = 0.004 < 0.01). 
NMDS showed a clear separation of the bacterial com-
munity structure in MCS from the other treatments, 

Fig. 6 The Kruskal‑Wallis H test plot at the phylum and genus levels for bacteria. Notes: MC, BS, and MCS are the same as in Fig. 1. Columns of 
different colors represent different groups. The rightmost is the P value and the corresponding symbol. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001
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and MC was included in BS, which was more concen-
trated; the community structure of MC and BS was 
more similar (Fig.  4). The hierarchical clustering also 
indicated that MCS was separated from other treat-
ments (Fig. 5). MC and BS were located in the same or 
similar branches, and their community structure was 
basically similar; the close distance of MCS1, BS1, and 
BS3 indicates that they had similar effects on bacterial 
community structure.

Comparison of bacterial community structures in groups
The significance test of group differences at the gate level 
showed that Actinobacteria had significant differences 
among the three groups (Fig.  6, P = 0.035 < 0.05), and 

the average relative abundance was 7.55% in MCS. At 
the genus level, Frankia, unclassified_p_Cyanobacteria, 
unclassified_o_Nostocales, and unclassified_c_norank_p_
Cyanobacteria were significantly different among the 
three groups. Frankia had a higher average relative 
abundance in MCS, and unclassified_p_Cyanobacteria, 
unclassified_o_Nostocales, and unclassified_c_norank_p_
Cyanobacteria had a higher average relative abundance 
in MC. Lefse multistage species difference discriminant 
analysis showed that F__unclassified_o__Nostocales, 
g__unclassified_o__Nostocales is the marker of MC and 
O__ Rhizobiales, p__Actinobacteria, c__Actinobacteria, 
o__Actinomycetales, f__Frankiaceae is the marker of MCS 
(Fig. 7).
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Fig. 7 LEfSe cladogram comparing communities from phylum to genus between treatment groups. Notes: MC, BS, and MCS are the same as in 
Fig. 1. Different color nodes represent microorganisms that are significantly enriched in the corresponding groups and have a significant impact on 
the differences between groups. Light yellow nodes indicate that there is no significant difference in different groups
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Correlations between soil microbial community 
composition and soil physical and chemical properties
PERMANOVA analysis showed that there was a sig-
nificant positive correlation between SMC, AK, and 
community structure. RDA results demonstrated 
that MCS were positively associated with SMC, SP, 
OMC, AK, and NN and negatively associated with 
AP (Fig.  8). MC and BS had no significant effect on 
soil physical and chemical properties. Spearman 
correlation heatmap results are shown in Fig.  9. In 
addition to the negative correlation between AP and 
Actinobacteria, the influence of physical and chemi-
cal properties on Actinobacteria, unclassified_d__
Unclassified, unclassified_k__norank_d__Bacteria, 
and Firmicutes was positively correlated. Among 
them, Actinobacteria was significantly positively 
correlated with SP, SNC, and AK; Firmicutes was 
significantly positively correlated with NN; and 
unclassified_ k__ norank_ d__ Bacteria was positively 
correlated with NN and sp. The influence of physi-
cal and chemical properties on Proteobacteria and 
Cyanobacteria was negatively correlated. Among 
them, Cyanobacteria was significantly negatively cor-
related with NN, SMC, and AK. It is worth noting 
that NN has little effect on Proteobacteria, AN had 

little effect on Firmicutes, and AP also had little effect 
on Cyanobacteria.

Discussion
Biochar is mainly composed of carbon molecules. The 
addition of biochar can effectively change the phys-
icochemical properties of soil. This study found that 
compared with the control, the treatment groups with 
different amounts of biochar were larger in the seven 
indexes of soil moisture content, soil porosity, ammo-
nium nitrogen, nitrate nitrogen, available phospho-
rus, available potassium, and organic matter. With the 
increase of addition, soil moisture content, soil porosity, 
available potassium, nitrate nitrogen, and organic mat-
ter also increased. The results of this study might sup-
port some result previously obtained. Yin et  al. (2021) 
also found that the addition of biochar would change the 
physicochemical properties of soil and increase available 
phosphorus, total nitrogen, nitrate nitrogen, ammonium 
nitrogen, and water content. Chen et  al. (2018) found 
that the content of organic matter increased after the 
addition of biochar. Li et al. (2020a) found that the soil 
porosity increased after the addition of biochar. This 
may be due to the porosity and composition of biochar, 
which increases the soil surface area, enhances the soil 
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porosity, and improves the micro-ecological environ-
ment (Agusalim et al. 2010, PiaK et al. 2016; Wang et al. 
2019; Wu et al. 2014).

The biochar addition affected the physicochemical prop-
erties of soil, affected the living space of bacteria, and then 
affected the diversity of soil. This study found that the bio-
char addition increased the diversity of bacterial commu-
nity and reduced the uniformity of bacterial community, 
and the species diversity showed an increasing trend with 
the increase of the amount of biochar, it is possible that the 
addition of biochar will change the soil microenvironment 
and cause the difference of bacterial community and bio-
diversity (Zhang et al. 2017), and this was consistent with 
many research (Nan et al. 2016; Wu et al. 2019; Hu et al. 
2014; Thuy et al. 2014; Nguyen et al. 2018).

Studies have confirmed that biochar addition has an 
impact on microbial community composition (Hu et  al. 
2014). In this study, Proteobacteria and Actinobacteria 
are the dominant bacteria; this is consistent with the 
previous research results (Wu et al. 2019; Yin et al. 2021; 
Yao et  al. 2017). Compared with the control, biochar 
addition significantly increased the relative abundance 

of Actinobacteria (Wu et  al. 2019); it may be that after 
biochar was added, the soil nutrition was richer, and 
Actinomycetes was a eutrophic group, which can use the 
available carbon source to grow rapidly (Zeng et al. 2016); 
this showed that the addition of biochar to the soil makes 
Actinomycetes grow and reproduce better and had a sig-
nificant impact on the structure of soil bacterial com-
munity, which was consistent with the previous research 
results (Zhang 2014).

The porosity of biochar will create an aerobic environ-
ment, which was conducive to the growth and reproduc-
tion of soil microbial community. This study found that 
NN, SP, SMC, and AK had a significant effect on bacte-
ria at the phylum level and were the main factors affect-
ing the community structure. It is worth noting that 
the physical and chemical properties of soil had no sig-
nificant effect on Proteobacteria, but Actinobacteria was 
positively correlated with SP, SMC, and AK and Cyano-
bacteria was negatively correlated with NN, SMC, and 
AK. This could be caused by Proteobacteria being the 
largest phylum in bacteria, with large intraphylum vari-
ability. Proteobacteria existed in large numbers in the 
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study area, and the difference was not obvious. Therefore, 
the soil physicochemical properties had no significant 
effect on its abundance. The importance of soil physical 
and chemical properties in shaping microbial commu-
nities had been proved by several studies. As an impor-
tant part of soil structure, porosity has a positive effect 
on the conduction of water and air in the soil (Luo et al. 
2019); this is conducive to the growth and reproduction 
of aerobic bacteria. Deng et  al. (2013) also found that 
soil porosity has an impact on soil microbial communi-
ties. Soil water content is one of the leading factors to 
maintain the life activities of soil microorganisms (Clark 
et al. 2009) and has a significant impact on soil microbial 
community, which was also confirmed by Li et al. (2020a, 
b). Available potassium can be decomposed and utilized 
by microorganisms, and its content affected microbial 
diversity. The study by Wang et al. (2021a, b) found that 
available potassium was negatively correlated with Pro-
teobacteria and positively correlated with Actinobacte-
ria; this was consistent with the research in this paper. 
Nitrate nitrogen is a kind of soil nitrogen fertilizer, and 
its nutrient content affects the abundance and diversity of 
soil microorganisms (Lan et al. 2017). Song et al. (2021) 
also found that nitrate nitrogen has a significant effect on 
microbial community structure.

Conclusions
Our study provides new basis for the rapid matur-
ing technology of clayey raw soil using biochar. Our 
results indicated that the addition of biochar signifi-
cantly improved the lack of fertility and low soil micro-
bial diversity of clayey raw soil. The present study, 
using high-throughput sequencing technologies, pro-
vided a detailed picture of bacterial community vari-
ations on the phylum level among different biochar 
additions and showed the relationship between physi-
cal and chemical properties and soil microbial com-
munities. Sequencing results and diversity indices 
indicated that the alpha diversity was higher in biochar 
addition level of 20 t/m3 than other processing groups. 
The dominant phyla were Proteobacteria, Cyanobacte-
ria, and Actinobacteria. At the gate level, Actinobacte-
ria had significant differences among the three groups 
with different addition amounts, and the content was 
the highest in the treatment group with 20 t/m3 addi-
tion amount. The microbial community structure was 
mainly influenced by soil porosity, soil moisture con-
tent, nitrogen fertilizer, and potassium fertilizer other 
than soil phosphate fertilizer and organic matter. This 
experiment shows that high addition amount of bio-
char has better effect on soil improvement, but the 
range of biochar addition in this study is small, and it 

is necessary to continue to expand the range of biochar 
addition for further research.
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